Clathrin- and Arp2/3-Independent Endocytosis in the Fungal Pathogen Candida albicans

نویسندگان

  • Elias Epp
  • Elena Nazarova
  • Hannah Regan
  • Lois M. Douglas
  • James B. Konopka
  • Jackie Vogel
  • Malcolm Whiteway
چکیده

UNLABELLED Clathrin-mediated endocytosis (CME) is conserved among eukaryotes and has been extensively analyzed at a molecular level. Here, we present an analysis of CME in the human fungal pathogen Candida albicans that shows the same modular structure as those in other fungi and mammalian cells. Intriguingly, C. albicans is perfectly viable in the absence of Arp2/3, an essential component of CME in other systems. In C. albicans, Arp2/3 function remains essential for CME as all 15 proteins tested that participate in CME, including clathrin, lose their characteristic dynamics observed in wild-type (WT) cells. However, since arp2/3 cells are still able to endocytose lipids and fluid-phase markers, but not the Ste2 and Mup1 plasma membrane proteins, there must be an alternate clathrin-independent pathway we term Arp2/3-independent endocytosis (AIE). Characterization of AIE shows that endocytosis in arp2 mutants relies on actin cables and other Arp2/3-independent actin structures, as inhibition of actin functions prevented cargo uptake in arp2/3 mutants. Transmission electron microscopy (TEM) showed that arp2/3 mutants still formed invaginating tubules, cell structures whose proper functions are believed to heavily rely on Arp2/3. Finally, Prk1 and Sjl2, two proteins involved in patch disassembly during CME, were not correctly localized to sites of endocytosis in arp2 mutants, implying a role of Arp2/3 in CME patch disassembly. Overall, C. albicans contains an alternative endocytic pathway (AIE) that relies on actin cable function to permit clathrin-independent endocytosis (CIE) and provides a system to further explore alternate endocytic routes that likely exist in fungal species. IMPORTANCE There is a well-established process of endocytosis that is generally used by eukaryotic cells termed clathrin-mediated endocytosis (CME). Although the details are somewhat different between lower and higher eukaryotes, CME appears to be the dominant endocytic process in all eukaryotes. While fungi such as Saccharomyces cerevisiae have proven excellent models for dissecting the molecular details of endocytosis, loss of CME is so detrimental that it has been difficult to study alternate pathways functioning in its absence. Although the fungal pathogen Candida albicans has a CME pathway that functions similarly to that of S. cerevisiae, inactivation of this pathway does not compromise growth of yeast-form C. albicans. In these cells, lipids and fluid-phase molecules are still endocytosed in an actin-dependent manner, but membrane proteins are not. Thus, C. albicans provides a powerful model for the analysis of CME-independent endocytosis in lower eukaryotes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional Genomic Analysis of Candida albicans Adherence Reveals a Key Role for the Arp2/3 Complex in Cell Wall Remodelling and Biofilm Formation

Fungal biofilms are complex, structured communities that can form on surfaces such as catheters and other indwelling medical devices. Biofilms are of particular concern with Candida albicans, one of the leading opportunistic fungal pathogens of humans. C. albicans biofilms include yeast and filamentous cells that are surrounded by an extracellular matrix, and they are intrinsically resistant to...

متن کامل

Cdc28–Cln3 phosphorylation of Sla1 regulates actin patch dynamics in different modes of fungal growth

A dynamic balance between targeted transport and endocytosis is critical for polarized cell growth. However, how actin-mediated endocytosis is regulated in different growth modes remains unclear. Here we report differential regulation of cortical actin patch dynamics between the yeast and hyphal growth in Candida albicans. The mechanism involves phosphoregulation of the endocytic protein Sla1 b...

متن کامل

Candida albicans Pathogenicity and Epithelial Immunity

Candida species are one of the most common fungal pathogens of humans and the causative agents of superficial and invasive candidiasis. The vast majority of Candida infections are mucosal, manifesting as vaginal or oral candidiasis, which together account for an estimated 40 million infections per year. High-level Candida colonisation is also associated with several gut diseases, including Croh...

متن کامل

The Candida albicans ESCRT pathway makes Rim101-dependent and -independent contributions to pathogenesis.

Candida albicans is an opportunistic pathogen that colonizes diverse mucosal niches with distinct environmental characteristics. To adapt to these different sites, C. albicans must activate and attenuate a variety of signal transduction pathways. A mechanism of signal attenuation is through receptor endocytosis and subsequent vacuolar degradation, which requires the endosomal sorting complex re...

متن کامل

Trafficking of Candida albicans through oral epithelial endocytic compartments.

Oral epithelial cells are the first cells that interact with C. albicans during the establishment of oropharyngeal candidiasis. Following initial adhesion, C. albicans invades oral epithelial cells by inducing its own endocytosis and gains access to epithelial vacuolar compartments. Epithelial endocytic pathways are key innate immune mechanisms in host defense. We examined the trafficking of C....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2013